Applicability of the linear–quadratic model to single and fractionated radiotherapy schedules: an experimental study
نویسندگان
چکیده
The aim of this study was to examine the applicability of the linear-quadratic (LQ) model to single and fractionated irradiation in EMT6 cells. First, the α/β ratio of the cells was determined from single-dose experiments, and a biologically effective dose (BED) for 20 Gy in 10 fractions (fr) was calculated. Fractional doses yielding the same BED were calculated for 1-, 2-, 3-, 4-, 5-, 7-, 15- and 20-fraction irradiation using LQ formalism, and then irradiation with these schedules was actually given. Cell survival was determined by a standard colony assay. Differences in cell survival between pairs of groups were compared by t-test. The α/β ratio of the cells was 3.18 Gy, and 20 Gy in 10 fr corresponded to a BED3.18 of 32.6 Gy. The effects of 7-, 15- and 20-fraction irradiation with a BED3.18 of 32.6 Gy were similar to those of the 10-fraction irradiation, while the effects of 1- to 5-fraction irradiation were lower. In this cell line, the LQ model was considered applicable to 7- to 20-fraction irradiation or doses per fraction of 2.57 Gy or smaller. The LQ model might be applicable in the dose range below the α/β ratio.
منابع مشابه
Accelerated proliferation correction factors in linear-quadratic and multiple-component models
Background: Study in design to incorporate accelerated proliferation correction factors into linearquadratic and multiple-component models. Materials and Methods: Accelerated proliferation rate correction factor has been incorporated into the linearquadratic and the multiple component models by applying accelerated exponential cell growth to explain the tumor cell kinetics and estimates proper ...
متن کاملRadiobiological evaluation of the radiation dose as used in high-precision radiotherapy: effect of prolonged delivery time and applicability of the linear-quadratic model.
Since the dose delivery pattern in high-precision radiotherapy is different from that in conventional radiation, radiobiological assessment of the physical dose used in stereotactic irradiation and intensity-modulated radiotherapy has become necessary. In these treatments, the daily dose is usually given intermittently over a time longer than that used in conventional radiotherapy. During prolo...
متن کاملCompatibility of the repairable-conditionally repairable, multi-target and linear-quadratic models in converting hypofractionated radiation doses to single doses
We investigated the applicability of the repairable-conditionally repairable (RCR) model and the multi-target (MT) model to dose conversion in high-dose-per-fraction radiotherapy in comparison with the linear-quadratic (LQ) model. Cell survival data of V79 and EMT6 single cells receiving single doses of 2-12 Gy or 2 or 3 fractions of 4 or 5 Gy each, and that of V79 spheroids receiving single do...
متن کاملTumour radiobiology beyond fractionation
Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...
متن کاملStereotactic Radiosurgery/Radiotherapy: A Historical Review
"Stereotactic" is an exact radiotherapy treatment modality which implements invasive and non-invasive facilities for improving precise dose delivery. Stereotactic refers to three-dimensional localization of a specific point in space by a unique set of coordinates that relate to a fixed external reference frame. An accurate delivery of radiation is attainable using these techniques with high pre...
متن کامل